The disordered perchlorate anion is hydrogen bonded to the apical methanol molecule [2.830 (5) Å for O(23) $\cdots$ O(1)].

The shortest intermolecular Cu···Cu<sup>i</sup> distance is 6.433 (3) Å [symmetry code: (i) = -x, -y, -z].

Close examples to the structure that we report herein are the complexes [Cu(terpy)(NO<sub>2</sub>)(H<sub>2</sub>O)]-NO3.H2O (Savariault, Rojo, Arriortúa & Galy, 1983), [Cu(dien)(HCO<sub>2</sub>)]HCO<sub>2</sub> (Davey & Stephens, 1971) and [Cu(dien)(CH<sub>3</sub>COO)]ClO<sub>4</sub> (Towle, Hoffmann, Hatfield, Singh & Chaudhuri, 1988), where dien is diethylenetriamine. The Cu environment is also tetragonally distorted octahedral in these three complexes and three of the four equatorial positions are filled by the N atoms of the tridenate terpy and dien ligands. Formate and acetate act as bridges in an anti-syn fashion between Cu<sup>II</sup> ions yielding onedimensional chains of metal ions. The aqua complex is monomeric: the nitrite anion acts as an asymmetrically bidentate ligand, its two O atoms occupying one equatorial and one axial position, the remaining axial site being filled by a water molecule. In the title complex the nitrate and methanol play the role of the nitrite and water, respectively. The presence of the semicoordinated CH<sub>3</sub>OH and water molecules in  $[Cu(terpy)(CH_3OH)(NO_3)]ClO_4$  and [Cu(terpy)- $(NO_2)(H_2O)]NO_3.H_2O$  block the one-dimensional  $\mu$ -bridging found in [Cu(dien)(HCO<sub>2</sub>)]HCO<sub>2</sub> and [Cu(dien)(CH<sub>3</sub>COO)]ClO<sub>4</sub>. The structures of the nitrito and nitrato complexes show that it is possible to grow single crystals of closely related complexes by using mixed counterions.

Financial support from the Comisión Interministerial de Ciencia y Tecnología, Spain (Project PB88-0490), is gratefully acknowledged. One of us (RR) thanks the Consellería de Cultura, Educación i Ciència de la Generalitat Valenciana for a grant.

#### References

- ANDERSON, O. P., PACKARD, A. B. & WICHOLAS, M. (1976). Inorg. Chem. 15, 1613–1618.
- CASTRO, I., FAUS, J., JULVE, M. & GLEIZES, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1937-1944.
- DAVEY, G. & STEPHENS, F. S. (1971). J. Chem. Soc. A, pp. 103-106.
- FOLGADO, J. V., CORONADO, E., BELTRÁN-PORTER, D., ROJO, T. & FUERTES, A. (1989). J. Chem. Soc. Dalton Trans. pp. 237-241.
- FOLGADO, J. V., GÓMEZ-ROMERO, P., SAPIÑA, F. & BELTRÁN-PORTER, D. (1990). J. Chem. Soc. Dalton Trans. pp. 2325–2329.
- FOLGADO, J. V., IBÁÑEZ, R., CORONADO, E., BELTRÁN, D., SAVARIAULT, J. M. & GALY, J. (1988). Inorg. Chem. 27, 19–26. HATHAWAY, B. J. (1973). Struct. Bonding (Berlin), 14, 49–67.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KELLER, E. (1987). SCHAKAL. A Fortran Program for the Graphical Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1984). MULTAN84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- REINEN, D. & FRIEBEL, C. (1979). Struct. Bonding (Berlin), 37, 1–60.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- ROJO, T., ARRIORTÚA, M. I., RUIZ, J., DARRIET, J., VILLENEUVE, G. & BELTRÁN-PORTER, D. (1987). J. Chem. Soc. Dalton Trans. pp. 285–291.
- SAVARIAULT, J. M., ROJO, T., ARRIORTÚA, M. I. & GALY, J. (1983). C. R. Acad. Sci. Paris, 297, 895–898.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SOLANS, X., AGUILÓ, M., GLEIZES, A., FAUS, J., JULVE, M. & VERDAGUER, M. (1990). Inorg. Chem. 29, 775-784.
- Towle, D. K., HOFFMANN, S. K., HATFIELD, W. E., SINGH, P. & CHAUDHURI, P. (1988). *Inorg. Chem.* 27, 394–399.

Acta Cryst. (1992). C48, 2114-2116

## Chloro[diphenyl(diphenylphosphino- $\kappa P$ -methyl)phosphine selenide]gold(I) Dichloromethane Hemisolvate at 178 K

BY PETER G. JONES\* AND CARSTEN THÖNE

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig, Germany

(Received 14 November 1991; accepted 7 April 1992)

Abstract. [AuCl( $C_{25}H_{22}P_2Se$ )].<sup>1</sup>/<sub>2</sub>CH<sub>2</sub>Cl<sub>2</sub>,  $M_r = 738.2$ , monoclinic,  $P2_1/c$ , a = 9.790 (3), b = 18.050 (4), c = 15.118 (4) Å,  $\beta = 105.86$  (3)°, V = 2570 Å<sup>3</sup>, Z = 4,  $D_x = 1.91$  Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu =$ 7.49 mm<sup>-1</sup>, F(000) = 1412, T = 178 K. The structure was refined to R = 0.046 for 3339 unique observed

\* Author to whom correspondence should be addressed.

0108-2701/92/122114-03\$06.00

© 1992 International Union of Crystallography

Table 1. Atomic coordinates  $(\times 10^4)$  and equivalent isotropic displacement coefficients  $(\text{\AA}^2 \times 10^4)$ 

| $U_{eq} =$ | $(1/3)\sum_i\sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j$ | ŀ |
|------------|---------------------------------------------------------------|---|
|------------|---------------------------------------------------------------|---|

|       | x          | у          | Z          | $U_{eq}$ |
|-------|------------|------------|------------|----------|
| Au    | 7228.1 (3) | 1786.8 (2) | 6974.7 (2) | 274 (1)  |
| Se    | 3828 (1)   | 1882.5 (6) | 5926.4 (7) | 380 (4)  |
| Cl    | 7024 (2)   | 1176 (1)   | 8276 (2)   | 315 (8)  |
| P(1)  | 7617 (2)   | 2351 (1)   | 5758 (2)   | 234 (7)  |
| P(2)  | 4379 (2)   | 2264 (1)   | 4755 (2)   | 269 (8)  |
| C(1)  | 6024 (8)   | 2806 (5)   | 5048 (6)   | 266 (20  |
| C(12) | 8078 (6)   | 967 (3)    | 5075 (4)   | 354 (22  |
| C(13) | 8509       | 488        | 4479       | 509 (29  |
| C(14) | 9090       | 772        | 3804       | 509 (28  |
| C(15) | 9240       | 1536       | 3725       | 448 (26  |
| C(16) | 8809       | 2015       | 4320       | 349 (22  |
| C(11) | 8228       | 1731       | 4996       | 245 (18  |
| C(22) | 8616 (5)   | 3826 (3)   | 5744 (4)   | 352 (22  |
| C(23) | 9669       | 4368       | 5976       | 469 (27  |
| C(24) | 11036      | 4180       | 6492       | 449 (26  |
| C(25) | 11351      | 3449       | 6777       | 448 (26  |
| C(26) | 10297      | 2907       | 6545       | 375 (23  |
| C(21) | 8930       | 3096       | 6029       | 238 (19  |
| C(32) | 4178 (6)   | 814 (3)    | 4119 (4)   | 404 (24  |
| C(33) | 4372       | 241        | 3546       | 494 (29  |
| C(34) | 5012       | 384        | 2845       | 467 (27  |
| C(35) | 5456       | 1101       | 2716       | 450 (26  |
| C(36) | 5261       | 1674       | 3289       | 318 (22) |
| C(31) | 4622       | 1531       | 3990       | 296 (20) |
| C(42) | 3326 (5)   | 3249 (3)   | 3277 (4)   | 352 (21) |
| C(43) | 2330       | 3746       | 2763       | 412 (24) |
| C(44) | 1098       | 3902       | 3023       | 370 (23) |
| C(45) | 864        | 3562       | 3797       | 432 (25) |
| C(46) | 1860       | 3065       | 4311       | 379 (24) |
| C(41) | 3092       | 2909       | 4051       | 300 (20  |
| Cl(0) | 3990 (3)   | 439 (2)    | 333 (2)    | 648 (13) |
| C(0)† | 5313 (20)  | - 133 (11) | 649 (14)   | 403 (49) |

† Site occupancy 0.5.

Table 2. Bond lengths (Å) and angles (°)

| Au—Cl<br>Se—P(2)<br>P(1)—C(11)<br>P(2)—C(1)<br>P(2)—C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.311 (3)<br>2.104 (3)<br>1.821 (7)<br>1.832 (8)<br>1.827 (6)                                                                               | Au—P(1)<br>P(1)—C(1)<br>P(1)—C(21)<br>P(2)—C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.224 (3)<br>1.828 (8)<br>1.828 (5)<br>1.816 (7)                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} Cl-Au-P(l)\\ Au-P(l)-C(1l)\\ Au-P(l)-C(2l)\\ C(1l)-P(l)-C(2l)\\ Se-P(2)-C(3l)\\ Se-P(2)-C(4l)\\ C(3l)-P(2)-C(4l)\\ P(l)-C(l)-C(l2)\\ P(l)-C(2l)-C(22)\\ P(2)-C(3l)-C(32)\\ P(2)-C(3l)-C(32)\\ P(2)-C(4l)-C(42)\\ P(2)-C$ | 175.2 (1)<br>113.7 (2)<br>114.8 (2)<br>105.1 (3)<br>113.9 (2)<br>113.8 (2)<br>106.5 (3)<br>119.5 (2)<br>122.9 (2)<br>119.2 (2)<br>121.5 (2) | $\begin{array}{l} Au-P(1)-C(1)\\ C(1)-P(1)-C(1)\\ C(1)-P(1)-C(2)\\ Se-P(2)-C(1)\\ C(1)-P(2)-C(3)\\ C(1)-P(2)-C(3)\\ P(1)-C(1)-P(2)\\ P(1)-C(1)-P(2)\\ P(1)-C(2)-C(26)\\ P(2)-C(3)-C(26)\\ P(2)-C(3)-C(26)\\ P(2)-C(3)-C(36)\\ P(2)-C(3)-C(36)\\ P(3)-C(30)-C(36)\\ P(3)-C(30)-C(30)-C(36)\\ P(3)-C(30)-C(36)\\ P(3)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(36)\\ P(3)-C(30)-C(30)-C(36)\\ P(3)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)\\ P(3)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C(30)-C$ | 112.3 (3)<br>106.2 (4)<br>103.6 (3)<br>112.5 (3)<br>106.5 (4)<br>102.8 (3)<br>117.0 (5)<br>120.5 (2)<br>117.1 (2)<br>120.8 (2)<br>118.5 (2) |

reflections. The title compound crystallizes with two disordered dichloromethane molecules per unit cell. The coordination geometry at Au is linear. A distorted tetrahedral geometry is observed at P. The P substituents, Se and Au<sup>1</sup>Cl, display a *cis* configuration with a short non-bonded Au<sup>...</sup>Se contact of 3.277 Å.

**Introduction.** Our recent studies of  $Au^{I}$  complexes have involved structural characterizations of complexes with Au—Se bonds (Jones & Thöne, 1990, 1991*a,b,c*, 1992). Some of these  $Au^{I}$ -Se complexes display short non-bonded intermolecular Au···Se contacts. We have begun to study the role of such interactions as a function of the steric demands of the ligands.

**Experimental.** A colourless crystal  $0.38 \times 0.52 \times$ 0.12 mm was used to record 8336 intensities on a Nicolet-Siemens four-circle diffractometer with an LT-2 low-temperature device (monochromated radiation,  $2\theta_{max} = 50^{\circ}$ , hemisphere Μο Κα  $\pm h \pm k - l$  and some + l equivalents). Three check reflections showed no significant intensity change. An absorption correction based on  $\psi$  scans was applied; transmissions ranged from 0.37 to 1.00. Merging equivalents gave 4516 unique reflections  $(R_{int} = 0.050, \text{ index ranges } h - 11 \text{ to } + 11, k - 20 \text{ to}$ +21, l = 17 to +6), 3356 of which with  $F > 4\sigma(F)$ were used for all calculations performed with program system Siemens SHELXTL-Plus (Sheldrick, 1987). Cell constants were refined from setting angles of 50 reflections in the range  $20-23^{\circ}$ .

The structure was solved by the heavy-atom method and refined anisotropically (Au, Se, P, Cl) on F to R = 0.046, wR = 0.055. A solvent molecule disordered over a symmetry centre was identified. Idealized phenyl groups were employed. Methylene H atoms were included in the refinement with a riding model. The weighting scheme was  $w^{-1} = \sigma(F) + 0.0008F^2$ . 111 parameters; S = 1.2; max. shift/e.s.d. = 0.001; max. residual electron density within  $\pm 2.2$  e Å<sup>-3</sup> near Au. Scattering factors were taken from *International Tables for X-ray Crystallography* (1974, Vol. IV). Final atomic coordinates are given in Table 1,\* with derived bond lengths and angles in Table 2.

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55369 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA0101]



Fig. 1. Molecular structure of title compound with arbitrary radii and H atoms omitted.

Discussion. The current structure (Fig. 1) consists of the two differently substituted organophosphorus fragments Ph<sub>2</sub>P(Se)CH<sub>2</sub>— and Ph<sub>2</sub>P(AuCl)CH<sub>2</sub>—. The fragments are comparable to the known structures of [Se(dppm)] (Colton, Hoskins & Panagiotidou, 1987) and [(AuCl<sub>2</sub>)(dppm)] (Schmidbaur, Wohlleben, Wagner, Orama & Huttner, 1977), respectively [dppm = bis(diphenylphosphino)methane]. The two substituents are mutually cis [torsion angle Se—P(2)…P(1)—Au = 8°]. In the first fragment, the P-Se bond length is 2.104 (3) Å. This value is identical with the observed P-Se bond length in [Se(dppm)]. Similar values were found in the crystal structures of Ph<sub>3</sub>PSe (Codding & Kerr, 1979) and Me<sub>3</sub>PSe (Cogne, Grand, Langier, Robert & Wiesenfeld, 1980). They are typical of a P=Se bond length. The Au-Cl and Au-P bond lengths in the second fragment [2.311 (3) and 2.224 (3) Å] are comparable with those in  $[AuCl_2(dppm)]$  [2.288 (1) and 2.238 (1) Å]. The Au-Cl bond is somewhat longer than the typical range 2.26–2.29 Å found in many chlorogold complexes (Jones, 1981, 1983, 1986). The Au atom displays the usual linear geometry with only slight deviations [175.2 (1)°]. The title molecule displays an intramolecular non-bonded Au-Se distance of 3.277 (1) Å. Comparable intermolecular non-bonded Au-Se distances are found in  $[Ph_3PAuSePh]$  [3.460 (1) and 3.381 (1) Å (Jones & 1990)],  $[(Ph_3PAu)_2Se(p-C_6F_4Cl)]^+.SbF_6^-$ Thöne, [3.516 (1) and 3.616 (1) Å (Jones & Thöne, 1992)]

and  $[Me_2PhPSeAuPPh_3]^+.SbF_6^-$  [3.353 (1) Å (Jones & Thöne, 1991*b*)]. These weak interactions probably play a significant role in the crystal packing.

We thank the Fonds der Chemischen Industrie for financial support.

#### References

- CODDING, P. W. & KERR, K. A. (1979). Acta Cryst. B35, 1261-1263.
- COGNE, A., GRAND, A., LANGIER, J., ROBERT, J. B. & WIESENFELD, L. (1980). J. Am. Chem. Soc. 102, 2238–2242.
- COLTON, R., HOSKINS, B. F. & PANAGIOTIDOU, P. (1987). Aust. J. Chem. 40, 1909–1912.
- JONES, P. G. (1981). Gold Bull. 14, 159-166.
- JONES, P. G. (1983). Gold Bull. 16, 114-124.
- JONES, P. G. (1986). Gold Bull. 19, 46-57.
- JONES, P. G. & THÖNE, C. (1990). Chem. Ber. 123, 1975-1978.
- JONES, P. G. & THÖNE, C. (1991a). Z. Naturforsch. Teil B, 46, 50-54.
- JONES, P. G. & THÖNE, C. (1991b). Inorg. Chim. Acta, 181, 291-294.
- JONES, P. G. & THÖNE, C. (1991c). Chem. Ber. 124, 2725-2729.
- JONES, P. G. & THÖNE, C. (1992). Z. Naturforsch. Teil B, 47, 600-602.
- SCHMIDBAUR, H., EBNER VON ESCHENBACH, J., KRUMBERGER, O. & MÜLLER, G. (1990). Chem. Ber. 123, 2261–2265.
- SCHMIDBAUR, H., WOHLLEBEN, A., WAGNER, F., ORAMA, O. & HUTTNER, G. (1977). Chem Ber. 110, 1748–1754.
- SHELDRICK, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- THÖNE, C. (1991). PhD thesis. Braunschweig Technical Univ., Germany.

Acta Cryst. (1992). C48, 2116-2120

# Structures of (L-Methionyl-L-methioninato)dimethyltin(IV) and (L-Alanyl-L-histidinato)dimethyltin(IV). A Class of Potential Antitumour Agents

BY GIANCARLO STOCCO AND GIANCARLO GULÌ

Dipartimento di Chimica Inorganica e Facoltà di Farmacia, Università di Palermo, Via Archirafi 23, 90123 Palermo, Italy

### AND GIOVANNI VALLE

Centro di Studi sui Biopolimeri, Instituto di Chimica Organica, Università degli Studi di Padova, Via Marzolo 1, 35100 Padova, Italy

(Received 13 March 1991; accepted 3 March 1992)

Abstract.  $C_{12}H_{24}N_2O_3S_2Sn$  [Me<sub>2</sub>Sn(MetMet)], (I),  $M_r$ = 427.17, orthorhombic,  $P2_12_12_1$ , a = 15.022 (2), b =12.558 (2), c = 9.417 (2) Å, V = 1776.5 (3) Å<sup>3</sup>, Z = 4,  $D_x = 1.60$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu =$ 15.44 cm<sup>-1</sup>, F(000) = 864, T = 293 K, R = 0.032 for

2243 unique reflections.  $C_{11}H_{18}N_4O_3Sn.CH_3OH$ [Me<sub>2</sub>Sn(AlaHis) MeOH solvate], (II),  $M_r = 405.02$ , orthorhombic,  $P2_12_12_1$ , a = 14.486 (2), b =12.928 (2), c = 8.812 (1) Å, V = 1650.3 (3) Å<sup>3</sup>, Z = 4,  $D_x = 1.63$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71069 Å,  $\mu =$ 

0108-2701/92/122116-05\$06.00 ©

0 © 1992 International Union of Crystallography